

Test 1

Klasse: 1Eb Datum: 28. Oktober 2021

1	2	3	4	5	Total	Note	EN

Zeit: 60 min. Max. 50 Punkte. Lösung nicht mit Bleistift, Lösungsweg muss ersichtlich sein! Zugelassen: handgeschriebene Zusammenfassung (2 Seiten, einseitig A4), Matlab und Taschenrechner ohne Speicher.

1. Geradengleichung (10)

Durch die Gleichung $x_2 = mx_1 + c$ wird eine Gerade im x_1x_2 -Koordinatensystem beschrieben. Dabei ist m die Steigung und d der y-Achsenabschnitt.

Geben Sie die Parameterdarstellung der Geraden an für

(a)
$$m = 4$$
, $d = -2$.

(c)
$$3x_1 - 4x_2 = -4$$

(b)
$$m = 0, d = 5$$

- (a) Welche Gerade verläuft senkrecht zu $2x_1 + x_2 = 5$?
- (b) Wie lautet die Geradengleichung für $(t \in \mathbb{R})$

$$g: \vec{x} = \begin{pmatrix} 2\\3 \end{pmatrix} + t \begin{pmatrix} 2\\5 \end{pmatrix}$$

2. Vektorraum (10)

Sind die unten angegebenen Mengen Vektorräume? Betrachten Sie nur die Abgeschlossenheit mit der Addition und der Multiplikation mit einem Skalar.

(a) Grundmenge V $(s \in \mathbb{R})$:

$$V = \{x | x = -2 \cdot s + 5\}$$

(b) Grundmenge $W(x, y \in \mathbb{R})$:

$$W = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \right\}$$

3. Harmonische Schwingungen (10)

$$f(t) = 3.7082 \cdot \cos(\frac{2\pi}{9}t) - 11.4127\sin(\frac{2\pi}{9}t)$$

- (a) Bestimmen Sie Kreisfrequenz, Nullphasenwinkel und Amplitude der Superposition.
- (b) Skizzieren Sie die Funktion über 3 Periodenlängen. Geben Sie 2 Nullstellen an.
- (c) Zeichnen Sie in der Skizze die Periodenlänge und die Amplitude der Superposition ein.

4. Vektoren (10)

$$\vec{f} = \begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix}, \vec{g} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \vec{h} = \begin{pmatrix} 9 \\ 2 \\ -3 \end{pmatrix}$$

Geben Sie die Komponenten folgender Vektoren an:

- (a) $\vec{a} \in \mathbb{R}^2$ hat die Norm 16.2 und schliesst mit der x-Achse den Winkel $\alpha = 72^\circ$ ein.
- (b) $\vec{b} \in \mathbb{R}^3$ ist komplanar zu \vec{f} und \vec{g} ($\vec{b} \neq \vec{g}$ und $\vec{b} \neq \vec{f}$)
- (c) $\vec{c} \in \mathbb{R}^3$, steht senkrecht zu \vec{f} und \vec{g} .
- (d) $\vec{d} \in \mathbb{R}^3$ ist antiparallel zu \vec{f} und hat die Länge 12.
- (e) $\vec{e} \in \mathbb{R}^3$ ist die Projektion von \vec{h} auf \vec{f} .

5. Lineares Gleichungssystem (10)

$$\begin{bmatrix} L_1: & 2x & +2y & = & 4 \\ L_2: & x & & +5z & = & 41 \\ L_3: & 3x & +6y & +z & = & 1 \end{bmatrix}$$

- (a) Bestimmen Sie für das vorliegende lineare Gleichungssystem die Zeilenstufenform.
- (b) Lösen Sie das Gleichungssystem durch Einsetzen von unten nach oben.

(c) Sind die Vektoren
$$\vec{a} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 3 \\ 6 \\ 1 \end{pmatrix}$ linear abhängig?