

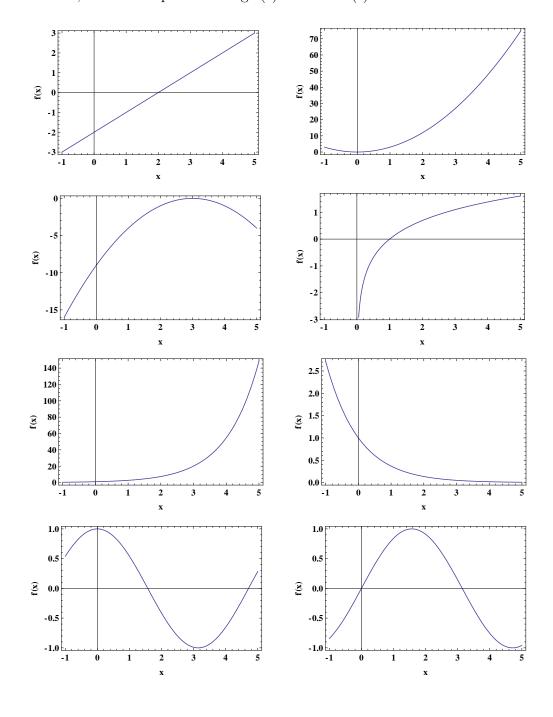
Arbeitsblatt, Ableitungen

Brückenkurs Physik Datum: 9. Juni 2018

1. Steile und flache Graphen

9IG3JU

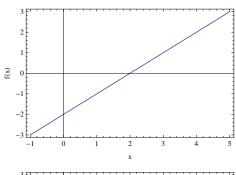
Wo sind Graphen am steilsten, wo am flachsten? Markieren Sie die Stellen und notieren Sie, ob der Graph dort steigt (s) oder fällt (f).

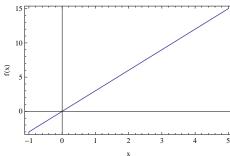


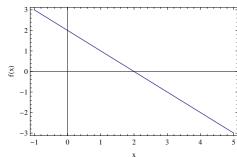
2. Steigung Skizzieren: Gerade

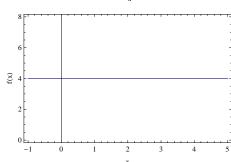
9NAHXQ

Skizzieren Sie die Steigung an jedem Ort.









3. Ableitung

ETCXKY

Die Steigung des Graphen $f(x) = m \cdot x + c$ ist f'(x) = m, z.B.

$$f(x) = 5 \cdot x + 2 \quad \Rightarrow \quad f'(x) = 5$$

Berechnen Sie die Steigungen der Graphen

(a)
$$f(x) = 1 \cdot x + 6$$

(b)
$$f(x) = -5 \cdot x - 4$$

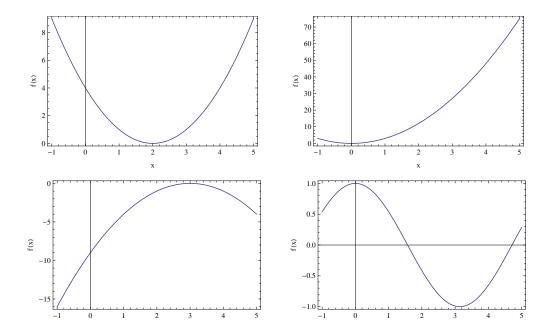
(c)
$$f(x) = 2$$

$$(d) f(x) = 3 \cdot x + 7$$

4. Steigung Parabel/Trigonometrische Funktionen

9NAHXQ

Skizzieren Sie die Steigung an jedem Ort.



5. Ableitung von x^2

ETCXKY

Die Steigung des Graphen $f(x) = x^2$ ist $f'(x) = 2 \cdot x$.

Summenregel: Die Steigung des Graphen f(x) = g(x) + h(x) ist f'(x) = g'(x) + h'(x).

Faktorregel: Die Steigung des Graphen $f(x) = b \cdot g(x)$ ist $f'(x) = b \cdot g'(x)$.

$$f(x) = x^2 + 2 \implies f'(x) = [x^2]' + [2]' = 2x$$

Berechnen Sie die Steigungen der Graphen

(a)
$$f(x) = x^2 + 6$$

(b)
$$f(x) = x^2 + 2x$$

(c)
$$f(x) = 9x^2 + 10x + 10$$

(d)
$$f(x) = -10x^2 - 3x + 4$$

(e)
$$f(x) = (x-6)^2$$

(f)
$$f(x) = (3-x)^2 + x$$

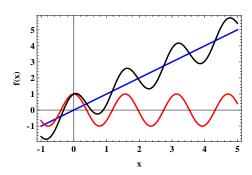
(g)
$$f(x) = (x-7) \cdot (5-x)$$

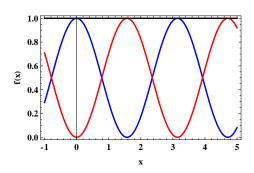
(h)
$$f(x) = a \cdot x^2 + b \cdot x + c$$

6. Summenregel graphisch

23P9QT

Der schwarze Graph f(x) ist jeweils die Summe des blauen g(x) und des roten h(x). Erklären Sie die Summenregel anhand dem rechten oder linken Bild.





7. Ableitung sin(x) und cos(x) und innere Ableitung

HCVNQ5

Die Steigung des Graphen $f(x) = \sin(x)$ ist $f'(x) = \cos(x)$. Die Steigung des Graphen $f(x) = \cos(x)$ ist $f'(x) = -\sin(x)$. Ableitung von $f(a \cdot x + b)$ ist $f'(a \cdot x + b) = f'(a)\Big|_{a=a\cdot x+b} \cdot a$. Beispiel

$$f(x) = \cos(2x)$$
 \Rightarrow $f'(x) = \left[\cos(u)\right]'_{u=2\cdot x} \cdot 2 = -\sin(2\cdot x) \cdot 2$

Berechnen Sie die Steigungen der Graphen

(a)
$$f(x) = \cos(x+4)$$

(b)
$$f(x) = \sin(6x)$$

(c)
$$f(x) = \sin(-4x + 4)$$

(d)
$$f(x) = \cos(10 - x)$$

(e)
$$f(x) = \cos(5x) + \sin(5x)$$

$$(f) f(x) = \cos(3) + \sin(3x)$$

(g)
$$f(x) = \cos(8x - 3) + \sin(8x - 3)$$

(h)
$$f(x) = \cos(1 - 5x) - \sin(1 - 5x)$$

8. Gemischte Aufgaben

8JY28W

Berechnen Sie die Steigungen der Graphen. Benutzen Sie dabei - wann immer möglich - die Regel für die innere Ableitung.

(a)
$$f(x) = 15 \cdot \cos(x)$$

(b)
$$f(x) = \sin(3x) + 2$$

(c)
$$f(x) = (x-2)^2$$

(d)
$$f(x) = (3-x)^2$$

(e)
$$f(x) = -2 \cdot (10 \cdot x + 2)^2$$

(f)
$$f(x) = (3 \cdot 2 - 1)^2$$

(g)
$$f(x) = 5 \cdot (2 - 3 \cdot x)^2$$

(h)
$$f(x) = 10 \cdot (4x+2)^2 - \sin(1-5x)$$

9. Ableitungen nach verschiedenen Variablen

FZXYZU

Berechnen Sie die Steigungen der Graphen. Beachten Sie nach welcher Variable abgeleitet wird.

$$f'(t) = \frac{d}{dt}f(t)$$

Notation:

$$f'(x) = \frac{d}{dx}f(x) = \frac{df}{dx} = \frac{df(x)}{dx}$$

Beispiel:

$$\frac{d}{dx}\left(x^2+t\right) = 2x+0$$

aber

$$\frac{d}{dt}(x^2+t) = 0+1$$

d.h. beim Ableiten z.B. nach x betrachten wir alle Terme, die kein x enthalten als konstant.

- (a) $f(t) = (4-t)^2$ berechne $\frac{d}{dt}f(t)$
- (b) $f(t) = t + \sin(3x) + 2$ berechne $\frac{d}{dt}f(t)$
- (c) $f(x) = t^2 + x 2$ berechne $\frac{d}{dx}f(x)$
- (d) $f(t) = \cos(3t)$ berechne $\frac{d}{dt}f(t)$
- (e) $f(t) = A 2 \cdot (10 \cdot t + 2)^2$ berechne $\frac{d}{dt}f(t)$
- (f) $f(t) = A \cdot \cos(\omega t)$ berechne $\frac{d}{dt}f(t)$
- (g) $f(t) = A \cdot \cos(k \cdot x \omega t)$ berechne $\frac{d}{dt} f(t)$
- (h) $f(x) = A \cdot (k \cdot x \omega t)^2$ berechne $\frac{d}{dx} f(x)$