

Serie 140, Energie

Brückenkurs Physik Datum: 10. September 2018

1. Hubarbeit (Nr. 5)

6WTDMB

Ein Fass von 200 kg wird eine Rampe hinaufgerollt. Welche Arbeit muss bei einer Höhendifferenz von 1.5 m verrichtet werden. Benutzen Sie

$$W = \vec{s} \odot \vec{F}$$

- (a) Länge der Rampe 2.5 m
- (b) Länge der Rampe 5 m
- (c) Rampe mit beliebiger Steigung

2. Spannarbeit (Nr. 8)

7SXG8S

Eine Feder wird mit 10 N um 15 cm gedehnt.

- (a) Wie gross ist die Arbeit um die Feder aus dem Ruhestand auf 5 cm zu dehnen?
- (b) Wie gross ist die Arbeit um die Feder von 5 cm auf 10 cm auszuziehen?
- (c) Wie gross ist die Arbeit um die Feder aus dem Ruhestand auf 15 cm zu dehnen?

3. Zylindrischer Tank (Nr. 11)

SFS2H7

Ein zylindrischer Tank mit $A=6\,\mathrm{m}^2$ Grundfläche wird bis zur Höhe von $h=3\,\mathrm{m}$ mit Wasser gefüllt. Welche Arbeit muss die Pumpe verrichten.

- (a) Die Pumpe befördert das Wasser über ein Steigrohr (Höhe $h_1 = 4.0 \,\mathrm{m}$) oben in den Tank.
- (b) Die Pumpe drückt das Wasser unten in den Behälter.

4. Pumpwerk (Nr. 13)

LCX63B

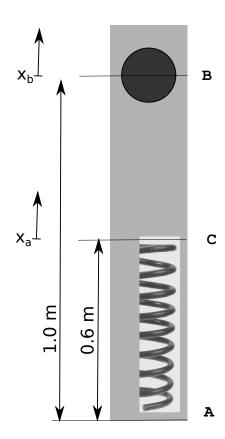
Das Pumpwerk Arolla ist mit einer Speicherpumpe ausgestattet, welche 4.2 m³/s fördert. Die Förderhöhe beträgt 312 m. Wie viele Sekunden muss sie in Betrieb sein, um die Energiemenge von 1000 kWh speichern zu können?

5. Weltrekord im Stabhochsprung (Nr. 18)

22EYXC

Der Weltrekord im Stabhochsprung wurde am 15.2.2014 (2018 noch aktuell) von Renaud Lavillenie mit 6.16 m aufgestellt. Die Geschwindigkeit vor dem Absprung ist maximal 10 m/s.

(a) Welche Höhe kann nach dem Energieerhaltungssatz erreicht werden?


- (b) Welche Energieformen sind beim Stabhochsprung beteiligt (Anlauf/Absprung/Überquerung der Latte)?
- (c) Welche Einflüsse erlauben eine höhere Überquerung der Latte?

6. Energieerhaltung Feder-Kugel (Nr. 26)

L0QE2K

In einer senkrecht stehenden Röhre befindet sich eine Feder . Die Federkonstante ist $D=0.1~\mathrm{N/cm}$. Eine Kugel der Masse $m=50~\mathrm{g}$ fällt senkrecht auf in der Röhre. Bei B hat sie eine Geschwindigkeit von $v_B=2.0~\mathrm{m/s}$. Die Röhre dient nur zur Führung. Kugel und Feder bewegen sich reibungsfrei und ohne Luftwiderstand. Die Masse der Feder wird vernachlässigt.

- (a) Welche kürzeste Länge AQ erreicht die Feder?
- (b) Welche Höhe kann die Kugel höchstens erreichen, wenn sie von der Feder zurückgeschleudert wird?
- (c) Auf welcher Höhe ist die Geschwindigkeit der Kugel maximal?

7. PW bremsen (Nr. 27)

UZM66B

Ein PW von 1450 kg bremst auf einer Strecke von 75 m von 120 km/h auf 60 km/h ab.

- (a) Wie viel kinetische Energie werden umgewandelt? Geben Sie die Energie auch in Prozent der ursprünglichen kinetischen Energie an.
- (b) Wie gross ist die Bremskraft?
- (c) Wie gross ist die verrichtete Arbeit der Bremskraft?

8. Feder mit Reibung (Nr. 30)

50QQ48

Ein Paket rutscht auf einer Unterlage und wird von einer Feder abgebremst. Anfangsgeschwindigkeit $v_1 = 4.0 \text{ m/s}$, Strecke l = 1.2 m, Masse m = 2.0 kg, Reibungszahl $\mu = 0.6$, Federkonstante D = 500 N/m.

- (a) Wo kommt das Paket zum Stillstand?
- (b) Bleibt es dort stehen, oder ist die Federkraft grösser als die Reibung?

9. Aufzug (Nr. 37)

MPPL6K

Ein Aufzug hebt eine Last von F=3 kN in t=15 s auf die Höhe h=22.5 m. Wie gross ist der Wirkungsgrad der Anlage, wenn die Antriebsmaschine $W_{\rm in}=6$ kW leistet?

10. PW beschleunigen (Nr. 47)

NW5HY9

Ein PW von $m=1\,400$ kg leistet P=100 kW. Wie gross ist die maximale Beschleunigung auf horizontaler Strasse bei v=90 km/h und einem Fahrwiderstand von $F_r=500$ N?

11. Kosten Energie (Nr. 51)

P9BHF3

Benzinmotoren mit Direkteinspritzung benötigen im optimalen Betriebspunkt $m_1 = 0.240$ kg Kraftstoff für eine kWh mechanische Energie. Der Verbrauch kann aber auf $m_2 = 0.400$ kg pro kWh steigen.

- (a) Wie gross ist der Wirkungsgrad?
- (b) Wie gross ist der kombinierte Wirkungsgrad mit einem Getriebe mit einem Wirkungsgrad $\eta_2 = 0.95$.