Hands-on Tutorial on Phonon calculations

b UNIVERSITÄT BERN

> Adams DJ donat.adams@geo.unibe.ch

> Overview

- Introduction: How include thermal effects in theory?
- Phonons, harmonic approximation: Theory
 - Harmonic oscillator
 - Thermodynamics (Quasi Harmonic Approximation, QHA)
 - Contributions from long wavelength phonons
- Structure of the Earth's mantle: Applicaionts QHA
- Extension of Quasiharmonic approximation: Decoupleed anharmonic Mode approximation (DAMA)
- Conclusions and outlook

Introduction: How include thermal effects in theory?

b UNIVERSITÄT BERN

- > Theoretical calculations often performed at T=0 K !
- > In Earth interion minerals are commonly at *T*>0 K
- > Measured wave velocities

$$\begin{split} d\ln V_p &= \frac{\partial \ln V_p}{\partial T} \, dT + \frac{\partial \ln V_p}{\partial C} \, dC + \frac{\partial \ln V_p}{\partial F} \, dF \\ d\ln V_s &= \frac{\partial \ln V_s}{\partial T} \, dT + \frac{\partial \ln V_s}{\partial C} \, dC + \frac{\partial \ln V_s}{\partial F} \, dF \end{split}$$

> Numerical inversion \implies

composition (C), temperature (T), fraction of partial melt (F)

Masters, G. et. al. (2000). In Karato, S. et al. Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, Washington, Am. Geophys. Union. Deschamps, F. and Trampert, J. (2003). Phys. Earth Planet. Int., 140:277–291 Deschamps F, Trampert J / Earth and Planetary Science Letters **222** (2004) 161–175 -900 -450 0 450 900 dT (K)

^b UNIVERSITÄT BERN

Background Thermodynamics

- Free energy G(T,P) is needed to calculate phase equilibria
- > G(T,P) can be obtained from F(T,V)

$$G(P,T) = F(V,T) + P \cdot T = \underbrace{E_{0K}(V)}_{=U} + E_{ZP}(V) - T \cdot S(T,V) + P \cdot V$$

- > $E_{OK}(V)$ can be obtained from static calculations (geometry optimization)
- E_{ZP}(V) is a (small) correction, taking into account the quantum nature of the atomic cores
- > $E_{ZP}(V)$ -T * S(T, V) can be calculated from partition function

b UNIVERSITÄT BERN

Background Harmonic Oscillator

- Move 1 atom along 1 degree of freedom (N atoms, 3N-3 degrees of freedom)
- Curvature of potential energy surface determines *all* vibrational frequencies (e.g. Wu, 2008)
- > (Quasi) Harmonic approximation => atoms are "connected by springs" and experience the potential $U={k\over 2}(q_{\mu}$
- > Energies for harmonic potential are equidistant

$$\mu \in [1, 3N - 3]$$

- > Indices:
 - Accounts for degree of freedom
 - J accounts for energy level
- Theory breaks down for negative curvatures of potential energy surface

UNIVERSITÄT RERN

 $Z = \sum_{i} e^{-\frac{\epsilon_i}{k_B T}}$ $A = -k_B T \ln Z$

Background **Thermodynamics**

- The partition function Z gives > access to all thermodynamic quantities
- The free energy is the > thermodynamically relavant potential at T>0
- Thermodynamic energy >
- Heat capacity >
- Elastic constant tensor >

thermodynamically relavant
potential at
$$T>0$$
 $\langle E \rangle = k_B \cdot T^2 \frac{\partial \ln Z}{\partial T}$
> Thermodynamic energy
> Heat capacity $c_V = \frac{\partial \langle E \rangle}{\partial T}$
> Elastic constant tensor $c_{ij}^T(T, P) = \left[\frac{\partial^2 A}{\partial \varepsilon_i \partial \varepsilon_j}\right]_P$
 $G(P,T) = F(V,T) + P \cdot T = \underbrace{E_{0K}(V)}_{=U} + \underbrace{E_{ZP}(V) - T \cdot S(T,V)}_{A} + P \cdot V$

UNIVERSITÄT BERN

Background **Phonons**

- In solid, the lowest energy > excitations are collective vibrations of atoms: phonons
- They can be obtained from > force constant matrix
- The eigenvalues of the > dyn eige
- The eigenvectors of the > dynamica matrix D are the polarization vectors

amical matrix D are
enenergies
$$D = \begin{bmatrix} \frac{1}{\sqrt{m_1 \cdot m_1}} \end{bmatrix}$$

$$\Phi = \begin{bmatrix} \frac{d^2 E}{dq_1 \, dq_1} & \dots \\ \dots & \frac{d^2 E}{dq_\mu \, dq_\nu} \end{bmatrix}$$

$$-\frac{dE}{dq_{\mu}} = F_{\mu} \implies \frac{d^2E}{dq_{\mu}\,dq_{\mu}} = -\frac{dF_{\nu}}{dq_{\mu}}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{m_1 \cdot m_1}} \frac{d^2 E}{dq_1 dq_1} & \dots \\ & \frac{1}{\sqrt{m_\mu \cdot m_\nu}} \frac{d^2 E}{dq_\mu dq_\nu} \end{bmatrix}$$

b UNIVERSITÄT BERN

Example Dynamical matrix

Background Contribution of long wave-length phonons

Free energy of solid > $A = U + \sum \frac{1}{2} \hbar \omega_{\mu} + k_B T \ln \left(1 - e^{-\frac{\hbar \omega_{\mu}}{k_B T}} \right)$ Contribution from long wave- $^{\mu}$ > length phonons are important $f(\omega_{\mu})$ \mathbf{M} Avoid large supercells through > summation over Brillouin Zone • In small cell determine force Х constants • • - Recompute Dynamical matrix at several long wave-length ۰ phonons — Sum up contributions using $\sum w_{\nu} \cdot f(\omega_{\nu})$ $A \rightarrow U +$ multiplicty w_{y} $\nu < < 3N - 3$

Composition of the Earth's (lower) mantle

D UNIVERSITÄT BERN

- > MgSiO₃: most abundant constituent in the Earth's lower mantle
- > Orthorhombic distorted perovskite structure (*Pbnm*)
- > Its stability is important for understanding deep mantle (D" layer)

Lower mantle composition

D UNIVERSITÄT BERN

Phonon dispersion of MgSiO₃ perovskite

Temperature dependent elastic constants MgSiO3 perovskite

D UNIVERSITÄT BERN

Hands-on Tutorial on Phonon calculations

UNIVERSITÄT RERN

Adams DJ >

d	lona	t.ad	lams	\underline{a}	ge	o.ur	nibe	.ch
_								

Conclusions >

Harmonic theory treats vibrations as if they did not interact

System is equivalent to a collection of independent harmonic oscillators

- Energies used to compute partition function Z and the free energy, A(T).
- Through the free energy all properties are accessible
- DAMA allows to calculate the free energy even for materials with dynamic instabilities
- Dynamic instabilities are common in high temperature phases
- Good agreement between QHA (and DAMA) and experiment, e.g. for phase transition cryolite

Dr. Donat ADAMS University of Bern

Institute of Geological Sci.

Baltzerstrasse 1+3

CH-3012 Bern

Switzerland

Movies[.]

www.adams-science.com

DAMA: extension of the harmonic approximation to materials with negative curvature of the potential energy surface

- In perovskites ABO₃ the (large) size of the B cation stabilizes structure
- Large B => cubic structures
- Small B => static tilt (MgSiO3)
- Intermediate B => instabilities
 - CaSiO3
 - cryolite Na₃AlF₆
- Main effect of the anharmonic treatment is stabilization of vibrational modes with imaginary frequencies.
- > All the frequencies are positive in the DAMA

DOS [a.u.]

Thursday, Nov. 16th 2017, Hands-On Tutorial Phonons 2017, donat.adams@geo.unibe.ch

^b UNIVERSITÄT BERN

Phase transition in cryolite

Adams, D. J. and Passerone, D. (2016) Insight into structural phase transitions from the decoupled anharmonic mode approximation, J. Phys. Cond. Matt, **28**, 305401 Yang et al. (1993) Phys. Chem. Minerals 19, 528 Foy, Madden (2006) Ionic Motion in Crystalline Cryolite, J. Phys. Chem. B, 2006, 110 (31), pp 15302–15311

UNIVERSITÄT BERN

15

The DAMA Method

- > Decoupled Anharmonic Mode Approximation (DAMA)
- > At T>0 the free energy is minimized (not the inner energy)

- From the derivatives of the free energy many properties can be calculated
 - e.g. the temperature (and pressure) dependent elastic constants (*eij* are infinitesimal strains)

$$c_{ijkl}^{T} = \frac{1}{V} \left(\frac{\partial^2 A}{\partial e_{ij} \partial e_{kl}} \right) + \frac{1}{2} p \cdot \left(2 \mathbf{t}_{ij} \mathbf{t}_{kl} - \mathbf{t}_{il} \mathbf{t}_{jk} - \mathbf{t}_{ik} \mathbf{t}_{jl} \right)$$

The DAMA Method: If you know the Partition Function, you know all the thermal properties of the system!

b UNIVERSITÄT BERN

- Expression for free energy $A = U_0(V) k_B \cdot T \log(Z(V,T)) + p \cdot V$ inner Energy (at T=0 K)
 Calculate partition Function $Z = \sum_{\mu} \Omega_{\mu} \text{ and } \Omega_{\mu} = \sum_{k} e^{-\frac{\epsilon_{\mu,k}}{k_B \cdot T}}$ Phonon calculation
 i) H_{e} \rightarrow polarization vectors e sq
- Decoupled Anharmonic Mode Approximation (DAMA)
 - Optimization of atomic positions
 - Rotation of coordinates eliminate coupling between vibrational modes up to order 2 (Normal-Modes)
 - Along these modes vibrational spectra are calculated
 - All energies are inserted into partition fuction

Techniques to approximate hamiltonian

- Optimization of structures eliminates terms of order 1
- Rotation of structural coordinates eliminates off-diagonal terms of order 2
- DAMA keeps diagonal terms to *infinite order*
- DAMA profites from uncoupling keeping high order terms

Thermal average: Φ2μastharmon No polarization couplipgo(Φmation)

The DAMA Method, Comparison to the **Quasiharmonic approximation (QHA)**

- Curvatures of potential energy surface determines all vibrational > frequencies (e.g. Wu, 2008) $\omega_{\mu} = \sqrt{\frac{1}{m}_{\mu}} \frac{\partial^2 V(q_{\mu})}{\partial q_{\mu}^2} \Big|_{q_{\mu}} \overline{\mathbb{N}}^0$ $E_{\mu}^j = \hbar \cdot \omega_{\mu} \cdot \left(\frac{1}{2} + j\right) \text{ and } j \in \overline{\mathbb{N}}^0$
- Energies for harmonic potential are equidistant >
- Energies give rise to geometric series, which can be summed >

$$A(T) = E_0 + \frac{1}{2} \sum_{\mu} E^0_{\mu} + k_B T \sum_{\mu} \log \left[1 - \exp(-\hbar \omega_{\mu}/k_B T) \right]$$

eory breaks down for negative curvatures of potential energy surface

- The > (i.e. QHE not valid, partition function is still valid)
- Many efforts have been made to calculate the free energy >
 - Stochastic self-consistent harmonic approximation (Errea 2014)
 - Self-consistent ab initio lattice dynamical calculations (Souvatzis, 2008)
 - Solution of effective Hamiltonians using Monte Carlo simulations (Zhong, 1994)
 - Molecular dynamics sampling (e.g. Zhang, 2014)

Souvatzis P, Eriksson O, Katsnelson M I and Rudin S P 2008 Phys. Rev. Lett. 100 095901 Zhong W, Vanderbilt D and Rabe K 1994 Phys. Rev. Lett. 73 1861 Zhang D-B, Sun T and Wentzcovitch R M 2014 Phys. Rev. Lett. 112 058501 Errea I, Calandra M and Mauri F (2014) Phys. Rev. B 89 064302 Wu, Wentzcovitch, Umemoto et al. (2008) J. Geophys Res. 113

Thursday, Nov. 16th 2017, Hands-On Tutorial Phonons 2017, donat.adams@geo.unibe.ch

UNIVERSITÄT BERN

 $u^{\text{\tiny D}}$

Perovskites with dynamical instabilities at *T*>0 K

D UNIVERSITÄT BERN

- > General formula ABX3
- > Octahedra rigid
- > If A cation does not fill out space \implies tiltings
- > Tilting can be in 3 spatial directions
- Combinations tiltings leads to c/a=1, c/a>1, c/a<1</p>
- Tilting system is linked to a unique space group (Woodward 1997; Lufaso 2001)

Woodward PM, Acta Cryst. B **53**, 32 (1997). Woodward PM, Acta Cryst. B **53**, 44 (1997). Lufaso WM and Woodward PM, Acta Cryst. B **57**, 725 (2001).

 $u^{\scriptscriptstyle b}$

Perovskites with dynamical instabilities at *T*>0 K

D UNIVERSITÄT BERN

u

UNIVERSITÄT BERN

New type of perovskite structures with dynamical tilting

..... 63.6 ortho. cub.-°A Dynamic tilt No tilt Static tilt 400 500 600 $T(\mathbf{K})$ 1.0 0,8 Volume of Na_{0.5}K_{0.5}NbO₃ 1.0 물 0.6 0,6 between 300 and 700 K 20.0 ₿ 0A 0,4 according to Sakakura et al.13 0.2 0.0 -0.5 8.8 -9.8

 Dynamical tilting can explain volume *degrease* and symmetry restorations (when temperature is *increased*)

Adams and Churakov (2017) Classification of perovskite structural types with dynamical octahedral Tilting, submitted Sakakura, Wang et al. (2011) in IOP Conference Series: Materials Science and Engineering, Vol. 18

Thursday, Nov. 16th 2017, Hands-On Tutorial Phonons 2017, donat.adams@geo.unibe.ch

Indicators for dynamic tilting

- Volume increase in the low temperature phase (corresponds to the freezing out of dynamical tilts giving rise to a larger volume of the unit cell)
- > Apparent distortion of octahedra
- The observed instantaneous symmetry (e.g. from IR spectrum) does not correspond to the average symmetry.
- Experimentally observed space group of a perovskite-type structure not listed in the tables (Glazer 1972; Woodward 1997; Aleksandrov 1976).
- Proportions of the lattice parameters at odds with the ones indicated from the theory of static tilts.
- Large thermal displacement factors for B and X sites.

Woodward PM, Acta Cryst. B **53**, 32 (1997). Aleksandrov K, Ferroelectrics 24, 801 (1976). Glazer (A), Acta Cryst. B 28, 3384 (1972). Vibrational ellipsoids of cryolite below and above the phase transition

- > Cryolite Na₃AlF₆:
- Low temperature phase is P2₁/n (a⁺b⁻c⁻)
- high temperature Phase Immm would be a⁰b⁺c⁺ based on static tilts
- Dynamic tilt: at least one dynamic tilt, e.g. a⁺b⁰c⁺

D UNIVERSITÄT BERN

New type of perovskite structures with dynamical tilting

D UNIVERSITÄT BERN

Tilt system	Space group	No	a	b	с	Tilt system	Space group	No	а	b	c
$a^{-}b^{-}c^{d}$	C2/m	12	$2a_p$	$-2c_p$	$-a_p + b_p$	$a^+a^db^+$	Immm	71	$2a_p$	$2b_p$	$2c_p$
$a^+b^dc^+$	Immm	71	$2a_p$	$2b_p$	$2c_p$	$a^+a^db^d$	Cmmm	65	$2c_p$	$-2b_p$	a_p
$a^d b^+ c^-$	Cmcm	63	$-2a_p$	$2c_p$	$2b_p$	$a^{-}a^{d}b^{d}$	Fmmm	69	$2a_p$	$2b_p$	$2c_p$
$a^{-}b^{d}c^{d}$	Fmmm	69	$2a_p$	$2b_p$	$2c_p$	$a^d a^d b^-$	I4/mcm	140	$-a_p - b_p$	$a_p - b_p$	$2c_p$
$a^d b^+ c^d$	Cmcm	65	$-2a_p$	$2c_p$	b_p	$a^d a^d b^+$	P4/mbm	127	$a_p + b_p$	$-a_p + b_p$	c_p
$a^d b^- c^d$	Fmmm	69	$2a_p$	$2b_p$	$2c_p$	$a^d a^d b^d$	P4/mmm	123	b_p	a_p	$-c_p$
$a^+b^dc^d$	Cmmm	65	$2c_p$	$-2b_p$	a_p	$a^{-}a^{+}a^{d}$	Cmcm	63	$-2c_p$	$2a_p$	$-2b_p$
$a^d b^d c^d$	Pmmm	47	c_p	b_p	$-a_p$	$a^{-}a^{-}a^{d}$	Imma	74	$-2c_p$	$-a_p + b_p$	$a_p + b_p$
$a^{-}a^{-}b^{d}$	Imma	74	$a_p - b_p$	$-2c_p$	$a_p + b_p$	$a^+a^+a^d$	I4/mmm	139	$2a_p$	$2b_p$	$2c_p$

Adams and Churakov (2017) Classification of perovskite structural types with dynamical octahedral tilting, submitted

Application to AI: Thermal expansion

- Calculate vibrational spectrum (for different lattice constants)
- Calculate free energy A (interpolate A between different lattice constants)
- At given temperature minimize A
 => lattice constant

> At 500 K:
$$a_0 = 2.0311 \text{ Å} (-0.2\%)$$

 $a/a_0 \exp$

1

 a/a_0 DAMA

1.

T[K]

500

 700
 1.00574
 1.00565
 0.00913321
 7.9

 900
 1.01359
 1.01179
 0.178006
 7.8
 0
 200
 400
 600
 80

 T [K]

diff [%]

0.

^b UNIVERSITÄT BERN

