Atomistic Simulations of Geomaterials donat.adams@fhnw.ch www.adams-science.org

Phonons, QHA

Date: November 16th, 2017

1. Harmonic oscillator

In the HCl molecule the force constant is k = 478 N/m.

(a) Calculate the reduced mass $\mu = \frac{m_1 \cdot m_2}{m_1 + m_2}$ of the HCl molecule in SI units (kg).

$$m_{\rm H} = 1.008 \,\mathrm{u}, \ m_{\rm Cl} = 35.453 \,\mathrm{u}, \ \mathrm{u} = 1.6605402^{-27} \mathrm{kg}$$

(b) Calculate the vibrational frequency ν of the HCl molecule in SI units (Hz) and the corresponding wave-number $\frac{1}{\lambda}$ (in cm⁻¹).

$$\nu = \frac{1}{2\pi} \cdot \sqrt{\frac{k}{\mu}}$$

and

$$1/\lambda = \frac{\nu}{c}$$
 where $c = 299\,792\,458\frac{\mathrm{m}}{\mathrm{s}}$

2. Heat capacity

Using the partition function $Z = \frac{1}{1-e^{-\frac{\epsilon}{k_B T}}}$ of a single mode with energy $\epsilon = \hbar \cdot \omega_0$

- (a) Show that the thermal energy of a single mode is $\langle E \rangle = \frac{\epsilon}{e^{\frac{\epsilon}{k_B T}} 1}$ Hint : $\langle E \rangle = k_B T^2 \cdot \frac{\partial \ln Z}{\partial T}$
- (b) Show that its contribution to the heat capacity is $C_V = k_B \cdot \left[\frac{\epsilon}{k_B T}\right]^2 \frac{e^{\frac{\epsilon}{k_B T}}}{\left[e^{\frac{\epsilon}{k_B T}}-1\right]^2}$ Hint : $C_V = \frac{\partial \langle E \rangle}{\partial T}$

3. Phonon Density of states MgO

Setup a calculation for a phonon density of states for MgO at 0 GPa and 290 K. Modify the provided input file for the gulp-code adding the unit cell (Space group Fm3m, a = 4.2Å) and the temperature. Further information about the input files

- and instructive examples can be found on http://gulp.curtin.edu.au.
- (a) Run the gulp calculation typing gulp < example_mgo.gin > example_mgo.got
- (b) Read out the following quantities from the output :
 - i. Zero point energy
 - ii. Entropy
 - iii. Heat capacity (constant volume) per formula unit.
- (c) Compare with the experimental value of the heat capacity of $37.11 \frac{\text{J}}{\text{mol·K}}$.

DJ5828

QN9165

YXFHYI

(d) From the density of states (DOS) determine visually an average vibrational wave number (in cm^{-1}). Calculate its frequency in Hz and its energy in eV. Hint : Remember that

$$c\cdot T=\lambda$$

where c is the speed of light of a wave, λ its wavelength and T the time for one oscillation, i.e. the frequency is $\nu = 1/T$. Furthermore the energy of a particle with frequency ν is

$$E = h \cdot \nu$$

where h is Planck's constant.

4. Heat capacity of MgO from one mode

We will approximate the heat capacity of MgO using one representative vibrational vibrational mode with energy $\epsilon = 0.05$ eV corresponding to a wave number of

 $403 \, {\rm cm}^{-1}$.

(a) Calculate the heat capacity C_V at 300 K of one degree of freedom (in meV/K and $J/(mol \cdot K)$).

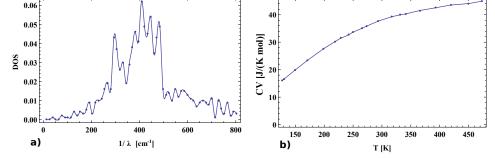
Heat capacity for a single mode :

$$C_V = k_B \cdot \left[\frac{\epsilon}{k_B T}\right]^2 \frac{e^{\frac{\epsilon}{k_B T}}}{\left[e^{\frac{\epsilon}{k_B T}} - 1\right]^2}$$

(b) Calculate the heat capacity C_V at 300 K of one formula unit MgO (in meV/K and $J/(mol \cdot K)$).

5. Heat capacity of MgO from DOS

SWGB6B



a) Vibrational sensity of states of MgO, b) Experimentally determined heat capacity of MgO.

4TCCTL

In this exercise we approximate the heat capacity of MgO using the vibrational DOS in the Range of 12 to 800 cm⁻¹. The corresponding DOS is given electronically. Using your preferred computing environment (Excel, matlab, python, etc.) calculate the heat capacity of MgO as a function of T in the range of 150 to 450 K.

(a) Calculate the contribution of each mode

$$C_V(\epsilon_{\mu}, T) = k_B \cdot \left[\frac{\epsilon_{\mu}}{k_B T}\right]^2 \frac{e^{\frac{\epsilon_{\mu}}{k_B T}}}{\left[e^{\frac{\epsilon_{\mu}}{k_B T}} - 1\right]^2}$$

(b) Add up the contributions including the correct weighting to obtain the total heat capacity (corresponding to one mode)

$$C_V = \sum_{\mu} w_{\mu} \cdot C_V(\epsilon_{\mu}, T)$$

(c) Multiply by the number of freedoms per unit cell $N=N_{\rm at}\cdot 3$ and compare with the experimental values at

T[K]	$C_P \left[\mathrm{J/(mol \cdot K)} \right]$
149.1	19.7895
293.6	37.6846
449.8	44.0527

Physical constants :

- Planck's constant $h = 6.62607004081 \cdot 10^{-34} \,\mathrm{J} \cdot \mathrm{s}$, or $h = 4.13566766225 \cdot 10^{-15} \,\mathrm{eV} \cdot \mathrm{s}$.
- Speed of light c = 299792458 m/s
- Electron Volt $eV = 1.602176620898 \cdot 10^{-19} \ {\rm J}$
- Boltzmann constant $k_B = 8.617330350 \cdot 10^{-5} \text{eV/K}$
- $6.02214179 \cdot 10^{23}$ particles per mol