Wahrscheinlichkeitstheorie und Statistik

Dr. D. Adams

Fachhochschule Nordwestschweiz Hochschule für Technik IMN

FS 2018

donat.adams@fhnw.ch wst 1/47

Bibliographie

Mathematik für Ingenieure und Naturwissenschaftler – Ein Lehr- und ArbeitsBuch für das Grundstudium, volume 2. Vieweg + Teubner, Wiesbaden, 2009.

Grundlagen der Differentialgleichungen für Dummies. Für Dummies Series. Wiley VCH Verlag GmbH, 2012. ISBN 9783527707959.

donat.adams@fhnw.ch wst 2/47

Griechisches Alphabet

			٨	λ	Lambda
			Μ	μ	My
Grossbuchst.	Kleinbuchst.		Ν	ν	Ny
Α	α	Alpha	Ξ	ξ	Xi
В	β	Beta	Ο	0	Omikron
Γ	γ	Gamma	П	π , ϖ	Pi
Δ	δ	Delta	Ρ	ρ , ϱ	Rho
Е	ϵ , ε	Epsilon	Σ	σ , ς	Sigma
Z	ζ	Zeta	Т	au	Tau
Н	η	Eta	Υ	v	Ypsilon
Θ	heta, $artheta$	Theta	Φ	ϕ , φ	Phi
I	ι	lota	Χ	χ	Chi
K	κ , \varkappa	Kappa	Ψ	ψ	Psi
			Ω	ω	Omega

donat.adams@fhnw.ch wst 3/47

Beschreibende Statistik

donat.adams@fhnw.ch

Was ist Stochastik

Definition (Stochastik)

Beschreibung und Untersuchung von Ereignissen, die vom Zufall beeinflusst werden.

Wahrscheinlichkeitstheorie + Statistik

Definition (Statistik)

Analyse von Daten, die durch Zufall beeinflusst sind

Einsatzgebiete Statistik:

- Technik, Physik
- Meteorologie
- Ökonomie

donat.adams@fhnw.ch wst 5/4

Arbeitsweise Statistik

- Formulierung Problem
- Planung Experiment
- Ausführung Experiment
- Beschreibung experimentelle Daten
- Schluss von Stichprobe auf Grundgesamtheit

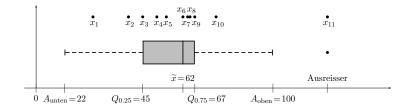
donat.adams@fhnw.ch wst 6/47

Beispiel Neonröhren

- Formulierung Problem:
 Wie gross ist Lebensdauer der Neonröhren, die an FHNW verwendet werden?
- Planung Experiment: Test einer Röhre genügt nicht. Alle können nicht getestet werden. Wir testen 11 Röhren.
- Ausführung Experiment:

$$\frac{x_1}{24}$$
 $\frac{x_2}{39}$ $\frac{x_3}{45}$ $\frac{x_4}{51}$ $\frac{x_5}{55}$ $\frac{x_6}{62}$ $\frac{x_7}{64}$ $\frac{x_8}{65}$ $\frac{x_9}{67}$ $\frac{x_{10}}{76}$ $\frac{x_{11}}{123}$ Angaben in Monaten

- Beschreibung experimentelle Daten: Lageparameter: Durchschnitt und Standardabweichung $\overline{x} = 61 \pm 25.25$
- Schluss von Stichprobe auf Grundgesamtheit:
 Durchschnittliche Lebensdauer 61 Monate



donat.adams@fhnw.ch wst 8/47

Definition (Mittelwert)

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Stichprobenumfang: n

Definition (Standard-Abweichung)

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Definition (Grundgesamtheit)

Menge der Elemente, die untersucht werden soll.

Definition (Stichprobe)

Teilmenge der Grundgesamtheit, die untersucht wird.

Metrische / diskrete / quantitative Grössen

Quantitative Merkmale unterteilt in diskrete und metrische

- diskrete Merkmale werden meistens von mehreren Merkmalsträgern angenommen
- bei diskreten Merkmalen ist es sinnvoll zu zählen wie of eine Merkmals-Ausprägung angenommen wird
- bei metrischen Grössen gibt es zu fast jedem Merkmalsträger eine, von anderen verschiedene Merkmal-Ausprägung (sogar bei grossen Stichproben)

quantitativen Grössen ist die Ordnung meist willkürlich: rot¿grün; Zürich; Zug ¡ Aarau

donat.adams@fhnw.ch wst 10/47

Metrische (stetige) Grössen (m), diskrete Grössen (d), qualitative Merkmale (q)

Ordnen sie zu:

- Windgeschwindigkeit auf dem Arbeitsweg
- Sonnenschein-Dauer am letzten Tag im Monat
- Anzahl Regentage im April
- Luftdruck während 24 Stunden
- Stau-Stunden am Gotthard
- Anzahl Lastwagen durch Belchentunnnel pro Stunde
- Zivilstand der Studierenden in Klasse
- steuerbares Einkommen der Studierenden in Klasse
- abgeschlossene Diplome der Studierenden in Klasse

donat.adams@fhnw.ch wst 11/47

Metrische (stetige) Grössen (m), diskrete Grössen (d), qualitative Merkmale (q)

Ordnen sie zu:

- Windgeschwindigkeit (m)
- Sonnenschein-Dauer am letzten Tag im Monat (m)
- Anzahl Regentage im April (d)
- Luftdruck (m)
- Stau-Stunden am Gotthard (m)
- Anzahl Lastwagen durch Belchentunnnel (d/m)
- Zivilstand (q)
- steuerbares Einkommen (m)
- abgeschlossene Diplome (q)

donat.adams@fhnw.ch wst 12/47

Darstellung von Daten

Graphische Darstellung

- Häufigkeitstabellen (Tabelle, m/d)
- Histogramme (Plot, m/d)
- Kreisdiagramme (q)

Häufigkeitstabellen:

- Anzahl Klassen (Richtwert) $k \approx \sqrt{n}$
- Klassenbreite $d \approx \frac{x_{\text{max}} x_{\text{min}}}{k}$
- Intervalle [a_i, a_{i+1}[(Daten auf Grenzen konsistent zu rechten Klasse gezählt)

donat.adams@fhnw.ch wst 13/47

Häufigkeitsverteilungen

BSP 1

Visualisieren Sie die Anzahl Betriebsstörungen an Baumaschinen.

Histogramm

BSP 2

Erstellen Sie ein Diagramm zum Verhältnis Studentinnen zu Studenten in der Klasse

BSP 3

Erstellen Sie eine Häufigkeitstabelle und ein Histogramm zu den Daten der Zugfestigkeit (Walzdraht, S. 6)

Lageparameter

Definition (Median)

$$ilde{x} = egin{cases} x_{\left(rac{n+1}{2}
ight)} & n ext{ ungerade} \\ 1/2 \cdot \left[x_{\left(rac{n}{2}
ight)} + x_{\left(rac{n}{2}+1
ight)}
ight]} & n ext{ gerade} \end{cases}$$

Definition (Quartile $Q_{0.25}$, $Q_{0.75}$)

Oberhalb von $Q_{0.75}$, liegt 1/4 der Messungen, unterhalb von $Q_{0.25}$ liegt 1/4 der Messungen

Definition (Ausreissergrenzen)

$$A_{ ext{unten}}=Q_{0.25}-1.5\cdot d_Q$$
 und $A_{ ext{oben}}=Q_{0.75}+1.5\cdot d_Q$
Quartilsweite: $d_Q=Q_{0.75}-Q_{0.25}$

donat.adams@fhnw.ch wst 15/47

Lageparameter (praktisch)

Liste der Länge n

- Ordne die Liste und berechne den Median
- Teile die Werte in zwei Listen auf
 - *n* ungerade: Der Median wird aus beiden Listen ausgeschlossen.
 - n gerade: Teile die Liste in exakt gleich lange Listen auf
- $Q_{0.25}$ ist der Median der ersten Liste, $Q_{0.75}$ ist der Median der zweiten Liste

donat.adams@fhnw.ch wst 16/47

Median/Quartile/Ausreisser

Ordnen:

Mittelwert: $\overline{x} = 5.74$

Median:
$$\tilde{x} = \frac{1}{2}(4.1 + 4.9) = 4.5$$

Quartile:
$$Q_{0.25} = 3.8$$
 und $Q_{0.75} = 5.3$

Aussreissergrenzen:
$$A_{\mathrm{unten}} = Q_{0.25} - 1.5 \cdot d_Q = 1.55$$
 und

$$A_{\mathrm{oben}} = Q_{0.75} + 1.5 \cdot d_Q = 7.55 \Rightarrow 19.5$$
 ist Ausreisser

Mittelwert:
$$\overline{x} = 4.2$$

Median:
$$\tilde{x} = \frac{1}{2}(4.1 + 4.9) = 4.1$$

donat.adams@fhnw.ch

Mittelwert vs. Median

Median ist stabiler gegenüber Ausreissern als Mittelwert

donat.adams@fhnw.ch wst 18/47

Mittlere Geschwindigkeit?

$$\tilde{v} = \frac{\sum_{i}^{n} s_{i}}{\sum_{i}^{n} t_{i}} = \frac{\sum_{i}^{n} s_{i}}{\sum_{i}^{n} \frac{s_{i}}{v_{i}}}$$

$$\overline{v}_{\rm h} = 65.45 \text{ km/h}$$

Mittlere Verzinsung?

$$K = K_0 \cdot (1 + r_1) \cdot (1 + r_2) \cdot (1 + r_3)$$

$$\overline{\nu}_{\rm g} = 5.15 \%$$

Lageparameter

Definition (Arithmetisches Mittel)

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Definition (Harmonisches Mittel)

$$\frac{1}{\overline{x}_{h}} = \frac{1}{n} \cdot \sum_{i=1}^{n} \frac{1}{x_{i}}$$

Definition (Geometrisches Mittel)

$$\overline{x}_{g} = (x_{1} \cdot x_{2} \dots x_{n})^{1/n} = \left(\prod_{i=1}^{n} x_{i}\right)^{1/n}$$

Zufall und Ereignis

donat.adams@fhnw.ch wst 21/47

5 Zufallsexperimente

- Permutation: 4 Bücher ins Regal stellen. 4 · 3 · 2 · 1 = 24 Möglichkeiten.
 Bei n Büchern n! Möglichkeiten.
- **Que Geordnete Stichprobe ohne Zurücklegen**: Aus 10 Büchern 3 ins Regal stellen. $10 \cdot 9 \cdot 8 = \frac{10 \cdot 9 \dots 2 \cdot 1}{7 \cdot 8 \dots 2 \cdot 1} = 720$ Möglichkeiten. Aus n Büchern k ins Regal stellen. $\frac{n!}{(n-k)!}$ Möglichkeiten.
- Variation (Geordnete Stichprobe mit Zurücklegen): Zahlenschloss mit 3 Ringen, auf jedem Ring hat es 10 Zahlen (0,1,2, ..., 9): 10 ⋅ 10 ⋅ 10 = 10³ = 1000 Möglichkeiten k Ringe mit n Zahlen darauf. n^k Möglichkeiten

donat.adams@fhnw.ch wst 22/47

5 Zufallsexperimente (forts)

- Kombination (Ungeordnete Stichprobe ohne Zurücklegen): 3-er Gruppen aus 10 Studierenden: geordnete 3er Gruppen ^{10!}/_{7!} = 720 Möglichkeiten; Möglichkeiten 3 Studierende in 3er Gruppe anzuordnen 3 · 2 · 1 = 6 ⇒ ^{10!}/_{7!·3!} = 120 Möglichkeiten k-er Gruppen aus n Studierenden: n!/(n-k)!·k! Möglichkeiten
- **2 Ungeordnete Stichprobe mit Wiederholung**: k = 6 identische Kugeln auf n = 9 Kisten verteilen (in jeder Kiste dürfen mehrere Kugeln liegen): $\frac{(n+k+1)!}{k!} = 3003$

donat.adams@fhnw.ch wst 23/47

Definition (Zufallsexperiment)

Vorgang

- beliebig oft wiederholbar und
- Ausgang ungewiss

(innerhalb einer Menge möglicher Ergebnisse).

Definition (Stichprobenraum)

Menge S aller Ausfallsmöglichkeiten.

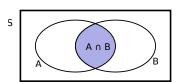
donat.adams@fhnw.ch wst 24/47

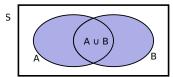
Geben Sie den Stichprobenraum an

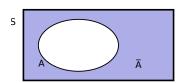
- Werfen eines Würfels
- Ziehung einer Lottozahl
- Kontrolle eines Haushalts durch die Billag
- Werfen einer Münze $S = \{K, Z\}$
- Werfen eines Würfels $S = \{1, 2, 3, 4, 5, 6\}$
- Ziehung einer Lottozahl $S = \{1, 2, 3, ..., 44, 45\}$
- Billag $S = \{Fernseher, Radio, 0\}$

Definition (Verknüpfung von Ereignissen)

- und-Verknüpfung $A \cap B$
- ullet oder-Verknüpfung $A \cup B$
- Gegenereignis \overline{A}







donat.adams@fhnw.ch wst 26/47

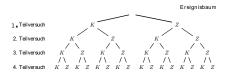
$$\bullet \ \overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\bullet \ \overline{A \cap B} = \overline{A} \cup \overline{B}$$

Beschreiben Sie in Worten und Mengen

$$S = \{1, 2, 3, 4, 5, 6\}, A = \{1, 3, 5\}, B = \{2, 4, 6\}, C = \{3, 6\}$$

- $\overline{A} = \{2, 4, 6\} = B$, Würfeln einer geraden Zahl
- $\overline{B} = \{1, 3, 5\} = A$, Würfeln einer ungeraden Zahl
- $A \cup B = \{1, 2, 3, 4, 5, 6\} = S$, Sicheres Ereignis
- $A \cap B = \emptyset$, unmögliches Ereignis
- $A \cap C = \{3\}$, Würfeln der 3



Theorem (Produktregel)

Besteht ein zusammengesetzter Versuch aus m unabhängigen Teilversuchen mit jeweils $[n_1, n_2, n_3, n_4, \dots, n_m$ Ausfallsmöglichkeiten, dann besitzt der Versuch

$$n_1 \cdot n_2 \cdot \cdot \cdot \cdot n_m$$
 Ausfälle.

donat.adams@fhnw.ch wst 29/47

Permutationen der Ziffern 1 bis 5?

$$P(5) = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$$

Variation 3-ter Ordnung mit Zurücklegen.

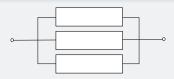
Anzahl mögliche dreistellige Zahlen?

Ziffern 1 bis 9.

$$V(9;3) = 9^3 = 729$$

Variation 3-ter Ordnung mit Zurücklegen.

Anzahl mögliche Schaltungen



5 verschiedene Widerstände R_1, \ldots, R_5 Jeder Widerstand nur ein Mal verwenden

$$C(5;3) = {5 \choose 3} = {5! \over 3! \cdot 2!} = 10$$

Kombination 3-ter Ordnung ohne Zurücklegen.

Anzahl mögliche ungeordneter Stichproben einer Lieferung von Batterien?

Gelieferte Batterien: 100, Stichprobe: 10

$$C(12;3) = {100 \choose 10} = {100! \over 10! \cdot 90!} = 17310309456440$$

Kombination 10-ter Ordnung ohne Zurücklegen.

donat.adams@fhnw.ch wst 33/47

Anzahl mögliche dreistellige Zahlen?

Ziffern 1 bis 9. Jede Ziffer nur ein Mal verwenden. (Ziffern 1 bis 9: kein Probleme mit führenden 0)

$$V(9;3) = \frac{9!}{(9-3)!} = 7 \cdot 8 \cdot 9 = 504$$

Variation 3-ter Ordnung ohne Zurücklegen.

donat.adams@fhnw.ch wst 34/47

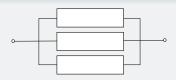
Pferdetoto

Dreierwette: Zieleinflauf der ersten drei Pferde. Anzahl Möglichkeiten bei 10 Pferden?

$$V(10;3) = \frac{10!}{(10-3)!} = 720$$

Variation 3-ter Ordnung ohne Wiederholungen.

Anzahl mögliche Schaltungen



5 verschiedene Widerstände R_1, \ldots, R_5 Jeder Widerstand bis zu 3 Mal verwenden

$$C_w(5;3) = {5+3-1 \choose 3} = \frac{7!}{4! \cdot 3!} = 35$$

Kombination 3-ter Ordnung mit Zurücklegen.

	ohne Wiederholung	mit Wiederholung	
Kombination k-ter Ord-nung	$C(n;k) = \binom{n}{k}$	$C_w(n;k) = \binom{n+k-1}{k}$	ungeordnete Stichproben
Variation k-ter Ord- nung	$V(n;k) = \frac{n!}{(n-k)!}$	$V_w(n;k)=n^k$	geordnet Stichproben
	Ziehung ohne Zurücklegen	Ziehung mit Zurücklegen	

Definition (Binomialkoeffizient)

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

donat.adams@fhnw.ch 37/47

Definition (Wahrscheinlichkeit (theoretisch))

$$p = \frac{g}{m}$$

g: Anzahl günstige Fällem: Anzahl mögliche Fälle

Wahrscheinlichkeit 6 beim Würfeln?

$$m=6$$
, $g=1 \Rightarrow p=\frac{1}{6}$

Wahrscheinlichkeit Kopf beim Werfen Münze?

$$m=2$$
, $g=1 \Rightarrow p=\frac{1}{2}$

$$m = \binom{45}{6} = 8145060$$

$$g = 1 \implies p = \frac{1}{m} = 0.000\,000\,123$$

Vergleiche Wahrscheinlichkeit mit Strecke Brugg-Paris

Strecke: 611 000 m.

$$p \approx \frac{0.07}{611\,000}$$

ca. 7 cm!

10 Nüsse davon 3 verdorben.

Wahrscheinlichkeit mit einem Griff 2 gute Nüsse zu finden.

$$m = \binom{10}{2} = 45$$

$$g = \binom{7}{2} = 21$$

Hier ist es einfacher mit geordneten Stichproben zu rechnen, obwohl eine ungeordnete Stichprobe!

Geordnete Stichprobe vs. ungeordnete Stichprobe

Bei vielen Experimenten können geordnete Stichproben betrachtet werden. Das vereinfach oft die Rechnungen. Dabei muss m und g konsequent für geordnete Stichproben berechnet werden

donat.adams@fhnw.ch 40/47

$$h(s_i) = \frac{\text{Anz.desAuftretensvon}s_i}{\text{Anz.Versuche}} = \frac{n_i}{N}$$

Für Wahrscheinlichkeiten $p(s_i)$ (oder $h(s_i)$ gilt:)

Theorem (Axiome der Wahrscheinlichkeit)

Sei $S = \{s_1, s_2, \dots s_n\}$ der Stichprobenraum des Versuchs (d.h. $s_i \cup s_i = 0$ für $i \neq j$):

- $0 < p(s_i) < 1$
- $p(s_1) + p(s_2) + \ldots + p(s_n) = 1$
- Spezielles Ereignis, z.B $A = \{s_1, s_2, s_3\}$:

$$p(A) = p(s_1) + p(s_2) + p(s_3)$$

donat.adams@fhnw.ch 41/47 Experimentelle Wahrscheinlichkeit (Simulation)

Führen Sie mit matlab folgenden Versuch durch: Mit einem Würfel wird 1000 mal gewürfelt. Bei jedem Wurf wird notiert, wie viele mal insgesamt eine 3 gewürfelt wurde.

Berechnen und plotten Sie die Wahrscheinlichkeit, dass eine 3 gewürfelt wird als Funktion der Versuchsnummer. Gegen welchen Wert konvergiert die relative Häufigkeit? Befehle: plot, ./, end

donat.adams@fhnw.ch wst

Experimentelle Wahrscheinlichkeit forts.

```
relh=sta./(1:mmax+1);

plot((1:mmax+1),relh)

relh(end-2:end)
```

donat.adams@fhnw.ch wst 43/47

Theorem (Additionssatz)

allgemein:

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

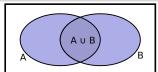
also für A und B elementfremd:

$$p(A \cup B) = p(A) + p(B)$$

Wahrscheinlich Gegenereignis

$$q = p(\overline{A}) = 1 - p(A)$$

S



Theorem (Multiplikationssatz)

A und B beziehen sich auf Teilversuche:

$$p(A \cap B) = p(A) \cdot p(B)$$

donat.adams@fhnw.ch wst 45/47

$$A = \{1, 3, 5\}$$
 und $B = \{3, 4, 5, 6\}$. Berechnen Sie $p(A \cup B)$.

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

$$= \left(\frac{1}{6} + \frac{1}{6} + \frac{1}{6}\right) + \left(\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}\right) - \left(\frac{1}{6} + \frac{1}{6}\right)$$

$$= \frac{5}{6}$$

Wahrscheinlichkeit drei mal hintereinander Sechs zu würfeln.

$$p(A_1 \cap A_2 \cap A_3) = \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{6^3} = 0.00463$$

Beispiel Versuch mit p und q

p Wahrscheinlichkeit für Erfolg, q = 1 - p Wahrscheinlichkeit für MissErfolg. Für n Versuche berechnen Sie

- Wahrsch. für n Erfolge pⁿ
- Wahrsch. für *n* Misserfolge $q^n = (1 p)^n$
- Wahrsch. mind. ein Erfolg $1 q^n$
- Wahrsch. erster Erfolg beim letzten Versuch: $q^{n-1} \cdot p$

47/47